OCR A Further Maths AS-level Pure Core

Formula Sheet

Complex Numbers
The Language of Complex Numbers

Cartesian form of a complex number

Modulus-argument form of a complex number

Complex conjugate of a complex number

$$
\begin{gathered}
z=a+i b, \\
a=\operatorname{Re}(z), \quad b=\operatorname{Im}(z)
\end{gathered}
$$

$$
z=a+b i, \quad|z|=r=\sqrt{a^{2}+b^{2}},
$$

$$
\arg (z)=\theta=\tan ^{-1} \frac{b}{a}
$$

$$
z=r(\cos \theta+i \sin \theta)=[r, \theta]
$$

$$
z=a+i b \text { has complex conjugate }
$$

$$
z^{*}=a-b i
$$

Basic Operations

Multiplication in modulus-argument form
$z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$ $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$
$\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$

Loci

Loci of points z such that

$$
|z-a|=k
$$

Loci of points z such that $|z-a|=|z-b|$

Loci of points z such that $\arg (z-a)=\alpha$

Circle of radius k centred on $(\operatorname{Re}(a), \operatorname{Im}(a))$

Perpendicular bisector of the line from a to b

Half-line starting from a making an angle α with the real axis

Matrices

The Language of Matrices

An $m \times n$ matrix has m rows and n columns

The null matrix has zeros in every entry

$$
\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

The identity matrix, I, is a square matrix with 1 s on the leading diagonal and 0s elsewhere

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The transpose of a matrix $\boldsymbol{A}, \boldsymbol{A}^{\boldsymbol{T}}$, swaps the rows and columns of \boldsymbol{A}

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)^{T}=\left(\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

Addition and Multiplication

Addition and subtraction

Scalar
Multiplication

Matrix
multiplication

$$
\begin{array}{rc}
\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
d_{1} & e_{1} & f_{1} \\
g_{1} & h_{1} & i_{1}
\end{array}\right) & \pm\left(\begin{array}{lll}
a_{2} & b_{2} & c_{2} \\
d_{2} & e_{2} & f_{2} \\
g_{2} & h_{2} & i_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} \pm a_{2} & b_{1} \\
d_{1} \pm d_{2} & e_{1} \\
g_{1} \pm g_{2} & h_{1}
\end{array}\right. \\
k\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
a k & b k & c k \\
d k & e k & f k \\
g k & h k & i k
\end{array}\right)
\end{array}
$$

$A: m \times n$ matrix, $B: n \times p$ matrix
$(\boldsymbol{A B})_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$
$\boldsymbol{A B}: n \times p$ matrix
Associativity and noncommutativity of matrix multiplication

$$
A(B \cdot C)=(A \cdot B) C
$$

$\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$ (In general. If this is true, \boldsymbol{A} and \boldsymbol{B} are said to commute)

2D Linear Transformations

$\left.\begin{array}{|c|c|}\hline \text { Transformation } & \text { Associated Matrix } \\ \hline\end{array} \begin{array}{c}\text { Reflection in } x \text { axis. } \\ \hline\end{array} \quad \begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

3D Rotations

The direction of positive rotation is taken to be anticlockwise when looking towards the origin from the positive side of the axis of rotation.
$\left.\begin{array}{c}\begin{array}{c}\text { Rotation around } x \text { axis } \\ \text { by an angle } \theta\end{array} \\ \begin{array}{c}\text { Rotation around } y \text { axis } \\ \text { by an angle } \theta\end{array} \\ \left.\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right) \\ \text { Rotation around } z \text { axis by } \\ \text { an angle } \theta \\ -\sin (\theta)\end{array} \begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ \cos (\theta)\end{array}\right)$.

Invariance Under Transformations

Invariant point $\binom{x}{y}$ under a transformation \boldsymbol{M}
$\boldsymbol{M}\binom{x}{y}=\binom{x}{y}$

The image of any point on l is also on l

Determinants

Determinant of a multiple of a matrix

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a \cdot \operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \cdot \operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)+c \cdot \operatorname{det}\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right)
$$

Solutions of Simultaneous Equations

Condition for a system
of equations $\boldsymbol{M r}=\boldsymbol{a}$ to have a unique solution

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

$\operatorname{det} \boldsymbol{A B}=\operatorname{det} \boldsymbol{A} \times \operatorname{det} \boldsymbol{B}$

$$
\operatorname{det}(k \boldsymbol{A})=k^{2} \operatorname{det}(\boldsymbol{A})
$$

Determinant of a matrix product
Determinant of a $2 \times$
2 matrix

Inverses of Matrices

$\boldsymbol{A}^{-\mathbf{1}}$ is the inverse matrix of \boldsymbol{A}, such that

Inverse matrix

Singular matrix

Inverse of a 2×2 matrix

Cofactor of an element determinant of the matrix without the element's row and column

Cofactor matrix of $\boldsymbol{A}-$ made of the cofactors of all elements of \boldsymbol{A}

Inverse of a 3×3 matrix

Inverse of a matrix product

Inverse of a transformation

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right), \quad a d-b c \neq 0
$$

Cofactor of element a in $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ is $\operatorname{det}\left(\begin{array}{ll}e & f \\ h & i\end{array}\right)$

Denoted by \boldsymbol{C}

$$
\boldsymbol{A}^{-\mathbf{1}}=\frac{1}{\operatorname{det}(\boldsymbol{A})} \boldsymbol{C}^{T}
$$

$(A B)^{-1}=B^{-1} A^{-1}$

For a transformation given by matrix \boldsymbol{M}, its inverse is given by $\boldsymbol{M}^{\mathbf{- 1}}$

Further Vectors

Vector and Cartesian Forms of an Equation of a Straight Line

Vector equation of a line
through the point \boldsymbol{a} parallel to the vector \boldsymbol{b}

Cartesian equation of a line in 3D

$$
\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}
$$

$$
\begin{gathered}
\text { For } \boldsymbol{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\lambda\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right), \text { writing } \lambda \text { in terms of } x, y \text { and } z: \\
\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}
\end{gathered}
$$

Scalar Product

Scalar product of two vectors \boldsymbol{a} and \boldsymbol{b}

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\boldsymbol{a}||\boldsymbol{b}| \cos (\theta)
$$

Angle θ between two vectors $\boldsymbol{a}, \boldsymbol{b}$, or between two lines with these direction vectors

Condition for \boldsymbol{a} and \boldsymbol{b} to be perpendicular vectors

$$
\theta=\cos ^{-1}\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}\right)
$$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=0
$$

Intersections of Lines

Intersection type

Parallel lines

Intersecting lines

Skew

$$
r_{1}=a_{1}+\lambda_{1} b_{1}, \quad r_{2}=a_{2}+\lambda_{2} b_{2}
$$

$$
b_{1}=\mu b_{2}
$$

There exist values of λ_{1} and λ_{2} such that

$$
r_{1}=r_{2}
$$

No such λ_{1} and λ_{2} as above exist

Vector Product

Vector Product - gives a vector perpendicular to both \boldsymbol{a} and \boldsymbol{b}

$$
\boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}
a_{2} b_{3}-b_{2} a_{3} \\
a_{3} b_{1}-b_{3} a_{1} \\
a_{1} b_{2}-b_{1} a_{2}
\end{array}\right)
$$

Further Algebra

Roots of Equations

Relationship between the roots and coefficients of a quadratic polynomial

Relationship between the roots and coefficients of a cubic polynomial

Relationship between the roots and coefficients of a quartic polynomial

Let p and q be roots of $a x^{2}+b x+c=0$. Then,

$$
p+q=-\frac{b}{a}, p q=\frac{c}{a} .
$$

Let p, q, and r be the roots of $a x^{3}+b x^{2}+c x+d=$ 0 . Then,

$$
\begin{gathered}
p+q+r=-\frac{b}{a}, \\
p q+q r+r p=\frac{c}{a}, \\
p q r=-\frac{d}{a} .
\end{gathered}
$$

Let p, q, r and s be the roots of $a x^{4}+b x^{3}+c x^{2}+$

$$
d x+e=0
$$

Then,

$$
\begin{gathered}
p+q+r+s=-\frac{b}{a}, \\
p q+p r+p s+q r+q s+r s=\frac{c}{a}, \\
p q r+p q s+p r s+q r s=-\frac{d}{a}, \\
p q r s=\frac{e}{a} .
\end{gathered}
$$

Transformations of Equations

Transformation of the roots of an equation, given a transformation of the equation

Let an equation in x have root $x=p$. Given a substitution $u=f(x)$, the transformed equation has a root $u=f(p)$

