

OCR A Further Maths AS-level

Pure Core

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Complex Numbers

The Language of Complex Numbers

Cartesian form of a complex number	z = a + ib, $a = Re(z), \qquad b = Im(z)$
Modulus-argument form of a complex number	$z = a + bi, \qquad z = r = \sqrt{a^2 + b^2},$ $\arg(z) = \theta = \tan^{-1}\frac{b}{a}$ $z = r(\cos\theta + i\sin\theta) = [r, \theta]$
Complex conjugate of a complex number	z = a + ib has complex conjugate $z^* = a - bi$

Basic Operations

Multiplication in modulus-argument form	$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$ $ z_1 z_2 = z_1 z_2 , \ \arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$
Division in modulus- argument form	$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$ $\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }, \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$

Loci

Loci of points z such that $ z - a = k$	Circle of radius k centred on $(Re(a), Im(a))$
Loci of points z such that $ z - a = z - b $	Perpendicular bisector of the line from a to b
Loci of points z such that $arg(z - a) = \alpha$	Half-line starting from a making an angle a with the real axis

▶ Image: PMTEducation

0

Matrices

The Language of Matrices

An $m imes n$ matrix has m rows and n columns	$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$
The null matrix has zeros in every entry	$\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$
The identity matrix, <i>I</i> , is a square matrix with 1s on the leading diagonal and 0s elsewhere	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}$
The transpose of a matrix A , A^T , swaps the rows and columns of A	$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{T} = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$

Addition and Multiplication

Scalar Multiplication $k \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} ak & bk & ck \\ dk & ek & fk \\ gk & hk & ik \end{pmatrix}$ Matrix multiplication $A: m \times n$ matrix, $B: n \times p$ matrixMatrix $(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$ $AB: n \times p$ matrixAssociativity and non- commutativity $A(B \cdot C) = (A \cdot B)C$ $AB \neq BA$ (In general of this is true, A and B are said to commute)	Addition and subtraction	$ \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & i_1 \end{pmatrix} \pm \begin{pmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & i_2 \end{pmatrix} = \begin{pmatrix} a_1 \pm a_2 & b_1 \pm b_2 & c_1 \pm c_2 \\ d_1 \pm d_2 & e_1 \pm e_2 & f_1 \pm f_2 \\ g_1 \pm g_2 & h_1 \pm h_2 & i_1 \pm i_2 \end{pmatrix} $
A: $m \times n$ matrix, $B: n \times p$ matrixMatrix multiplication $(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$ $AB: n \times p$ matrixAssociativity and non- commutativity $A(B \cdot C) = (A \cdot B)C$ $AB \neq BA$ (In general of this is true, A and B are said to commute)	Scalar Multiplication	$k \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} ak & bk & ck \\ dk & ek & fk \\ gk & hk & ik \end{pmatrix}$
Associativity and non- commutativity $AB \neq BA$ (In general, If this is true, A and B are said to commute)	Matrix multiplication	$A: m \times n$ matrix, $B: n \times p$ matrix $(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ $AB: n \times p$ matrix
of matrix multiplication	Associativity and non- commutativity of matrix multiplication	$A(B \cdot C) = (A \cdot B)C$ $AB \neq BA$ (In general. If this is true, A and B are said to commute)

•

•

▶ Image: Second Second

2D Linear Transformations

Transformation	Associated Matrix
Reflection in <i>x</i> axis.	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Reflection in y axis	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
Enlargement by scale factor <i>a</i>	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$
Stretch parallel to x axis by scale factor a	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$
Stretch parallel to y axis by scale factor a	$\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$
Reflection in line $y = x$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Reflection in line y = -x	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
Anticlockwise rotation by an angle $ heta$	$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$
Transformation with matrix A followed by transformation with matrix B	BA

()

()

3D Rotations

The direction of positive rotation is taken to be anticlockwise when looking towards the origin from the positive side of the axis of rotation.

Rotation around x axis by an angle θ	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$
Rotation around y axis by an angle θ	$\begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$
Rotation around z axis by an angle $ heta$	$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$

Invariance Under Transformations

Invariant point $\begin{pmatrix} x \\ y \end{pmatrix}$ under a transformation M	$\boldsymbol{M}\begin{pmatrix} \boldsymbol{x}\\ \boldsymbol{y} \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}\\ \boldsymbol{y} \end{pmatrix}$
Invariant line <i>l</i>	The image of any point on <i>l</i> is also on <i>l</i>

0

 \odot

S www.pmt.education Doll PMTEducation

Solutions of Simultaneous Equations

Condition for a system of equations Mr = ato have a unique solution

$$\det(\boldsymbol{M}) \neq 0$$

▶
O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O

 \odot

Inverses of Matrices

Inverse matrix	A^{-1} is the inverse matrix of A , such that $AA^{-1} = A^{-1}A = I$
Singular matrix	$det(A) = 0 \Rightarrow A^{-1}$ does not exist. A is singular
Inverse of a 2×2 matrix	$\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, ad-bc \neq 0$
Cofactor of an element – determinant of the matrix without the element's row and column	Cofactor of element a in $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ is $det \begin{pmatrix} e & f \\ h & i \end{pmatrix}$
Cofactor matrix of <i>A</i> – made of the cofactors of all elements of <i>A</i>	Denoted by <i>C</i>
Inverse of a 3×3 matrix	$A^{-1} = \frac{1}{\det(A)} C^T$
Inverse of a matrix product	$(AB)^{-1} = B^{-1}A^{-1}$
Inverse of a transformation	For a transformation given by matrix M , its inverse is given by M^{-1}

www.pmt.education 🖸 💿 💽 PMTEducation

 \odot

Further Vectors

Vector and Cartesian Forms of an Equation of a Straight Line

Vector equation of a line through the point a parallel to the vector b	$m{r} = m{a} + \lambda m{b}$	
Cartesian equation of a line in 3D	For $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \lambda \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$, writing λ in terms of x, y and z : $\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3}$	
Scalar Product		
Scalar product of two vectors a and b	$\boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3 = \boldsymbol{a} \boldsymbol{b} \cos(\theta)$	
Angle θ between two vectors a , b , or between two lines with these direction vectors	$\theta = \cos^{-1}\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{ \boldsymbol{a} \boldsymbol{b} }\right)$	
Condition for a and b to be perpendicular vectors	$\boldsymbol{a}\cdot\boldsymbol{b}=0$	
	Intersections of Lines	

Intersection type	$r_1=a_1+\lambda_1b_1, \qquad r_2=a_2+\lambda_2b_2$
Parallel lines	$b_1 = \mu b_2$
Intersecting lines	There exist values of λ_1 and λ_2 such that $oldsymbol{r_1}=oldsymbol{r_2}$
Skew	No such λ_1 and λ_2 as above exist

www.pmt.education DOO PMTEducation

Vector Product

Vector Product – gives a vector
perpendicular to both $m{a}$ and $m{b}$

$$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_2 b_3 - b_2 a_3 \\ a_3 b_1 - b_3 a_1 \\ a_1 b_2 - b_1 a_2 \end{pmatrix}$$

Further Algebra

Roots of Equations

Rela root q	ationship between th ts and coefficients of uadratic polynomial	Let p and q be roots of $ax^2 + bx + c = 0$. Then, $p + q = -\frac{b}{a}, \ pq = \frac{c}{a}$.
Relationship between the roots and coefficients of a cubic polynomial		Let p, q , and r be the roots of $ax^3 + bx^2 + cx + d = 0$. Then, $p + q + r = -\frac{b}{a}$, $pq + qr + rp = \frac{c}{a}$, $pqr = -\frac{d}{a}$.
Relationship between the roots and coefficients of a quartic polynomial		Let p, q, r and s be the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$. Then, $p + q + r + s = -\frac{b}{a},$ $pq + pr + ps + qr + qs + rs = \frac{c}{a},$ $pqr + pqs + prs + qrs = -\frac{d}{a},$ $pqrs = \frac{e}{a}.$
Transformations of Equations		
	Transformation of the roots of an equation, given a transformation of the equation	Let an equation in x have root $x = p$. Given a substitution $u = f(x)$, the transformed equation has a root $u = f(p)$

0

▶ Image: Second Second

