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Complex Numbers 

The Language of Complex Numbers 

 
Basic Operations 

 
 

Multiplication in 
modulus-argument form 

𝑧𝑧1𝑧𝑧2 = 𝑟𝑟1𝑟𝑟2(cos(𝜃𝜃1 + 𝜃𝜃2) +  𝑖𝑖 sin(𝜃𝜃1 + 𝜃𝜃2)) 
|𝑧𝑧1𝑧𝑧2| = |𝑧𝑧1||𝑧𝑧2|,  arg(𝑧𝑧1𝑧𝑧2) = arg(𝑧𝑧1) + arg(𝑧𝑧2) 

Division in modulus-
argument form 

𝑧𝑧1
𝑧𝑧2

=
𝑟𝑟1
𝑟𝑟2

(cos(𝜃𝜃1 − 𝜃𝜃2) +  𝑖𝑖 sin(𝜃𝜃1 − 𝜃𝜃2))  

�𝑧𝑧1
𝑧𝑧2
� = |𝑧𝑧1|

|𝑧𝑧2|
, arg �𝑧𝑧1

𝑧𝑧2
� = arg(𝑧𝑧1) − arg(𝑧𝑧2)  

 
 

Loci 
 

Loci of points 𝑧𝑧 such that 
|𝑧𝑧 − 𝑎𝑎| = 𝑘𝑘 Circle of radius 𝑘𝑘 centred on (𝑅𝑅𝑅𝑅(𝑎𝑎), 𝐼𝐼𝐼𝐼(𝑎𝑎)) 

Loci of points 𝑧𝑧 such that 
|𝑧𝑧 − 𝑎𝑎| = |𝑧𝑧 − 𝑏𝑏| Perpendicular bisector of the line from 𝑎𝑎 to 𝑏𝑏 

Loci of points 𝑧𝑧 such that 
arg( 𝑧𝑧 − 𝑎𝑎) = 𝛼𝛼 

Half-line starting from 𝑎𝑎 making an angle 𝛼𝛼 with 
the real axis 

Cartesian form of a 
complex number 

𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏, 
  𝑎𝑎 = 𝑅𝑅𝑅𝑅(𝑧𝑧), 𝑏𝑏 = 𝐼𝐼𝐼𝐼(𝑧𝑧) 

Modulus-argument form 
of a complex number   

𝑧𝑧 =  𝑎𝑎 + 𝑏𝑏𝑖𝑖, |𝑧𝑧| =  𝑟𝑟 = �𝑎𝑎2 + 𝑏𝑏2,  

arg(𝑧𝑧) = 𝜃𝜃 = tan−1
𝑏𝑏
𝑎𝑎 

𝑧𝑧 = 𝑟𝑟(cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃) = [𝑟𝑟,𝜃𝜃] 

Complex conjugate of a 
complex number  

𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 has complex conjugate  
𝑧𝑧∗ = 𝑎𝑎 − 𝑏𝑏𝑖𝑖  
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Matrices 

The Language of Matrices  

 

Addition and Multiplication 
  

Addition and 
subtraction  �

𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑑𝑑1 𝑅𝑅1 𝑓𝑓1
𝑔𝑔1 ℎ1 𝑖𝑖1

� ± �
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2
𝑑𝑑2 𝑅𝑅2 𝑓𝑓2
𝑔𝑔2 ℎ2 𝑖𝑖2

� = �
𝑎𝑎1 ± 𝑎𝑎2 𝑏𝑏1 ± 𝑏𝑏2 𝑐𝑐1 ± 𝑐𝑐2
𝑑𝑑1 ± 𝑑𝑑2 𝑅𝑅1 ± 𝑅𝑅2 𝑓𝑓1 ± 𝑓𝑓2
𝑔𝑔1 ± 𝑔𝑔2 ℎ1 ± ℎ2 𝑖𝑖1 ± 𝑖𝑖2

� 

Scalar 
Multiplication  

𝑘𝑘 �
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = �
𝑎𝑎𝑘𝑘 𝑏𝑏𝑘𝑘 𝑐𝑐𝑘𝑘
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 𝑓𝑓𝑘𝑘
𝑔𝑔𝑘𝑘 ℎ𝑘𝑘 𝑖𝑖𝑘𝑘

�  

Matrix 
multiplication  

𝐴𝐴:𝐼𝐼 × 𝑛𝑛 matrix, 𝐵𝐵:𝑛𝑛 × 𝑝𝑝 matrix  

(𝑨𝑨𝑨𝑨)𝑖𝑖𝑖𝑖 =  �𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝑨𝑨𝑨𝑨:𝑛𝑛 × 𝑝𝑝 matrix  

Associativity 
and non-

commutativity 
of matrix 

multiplication  

𝑨𝑨(𝑨𝑨 ∙ 𝑪𝑪) = (𝑨𝑨 ∙ 𝑨𝑨)𝑪𝑪  

𝑨𝑨𝑨𝑨 ≠ 𝑨𝑨𝑨𝑨  (In general. If this is true, 𝑨𝑨 and 𝑨𝑨 are said to commute)  

An 𝐼𝐼 × 𝑛𝑛 matrix has 𝐼𝐼 rows and n columns �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

� 

The null matrix has zeros in every entry  �
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� 

The identity matrix, 𝐼𝐼, is a square matrix with 
1s on the leading diagonal and 0s elsewhere  

�
1 0 0
0 ⋱ 0
0 0 1

� 

The transpose of a matrix 𝑨𝑨, 𝑨𝑨𝑻𝑻, swaps the 
rows and columns of 𝑨𝑨 

�
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

�

𝑇𝑇

=  �
𝑎𝑎 𝑑𝑑 𝑔𝑔
𝑏𝑏 𝑅𝑅 ℎ
𝑐𝑐 𝑓𝑓 𝑖𝑖

� 
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2D Linear Transformations 

Transformation Associated Matrix  

Reflection in 𝑥𝑥 axis. 
 

�1 0
0 −1� 

Reflection in 𝑦𝑦 axis �−1 0
0 1� 

Enlargement by scale 
factor 𝑎𝑎 �𝑎𝑎 0

0 𝑎𝑎� 

Stretch parallel to 𝑥𝑥 axis 
by scale factor 𝑎𝑎 �𝑎𝑎 0

0 1� 

Stretch parallel to 𝑦𝑦 axis 
by scale factor 𝑎𝑎 �1 0

0 𝑎𝑎� 

Reflection in line 
 𝑦𝑦 = 𝑥𝑥 

�0 1
1 0� 

 

Reflection in line 
 𝑦𝑦 = −𝑥𝑥 

� 0 −1
−1 0 � 

 

Anticlockwise rotation by 
an angle 𝜃𝜃 �cos(𝜃𝜃) − sin(𝜃𝜃)

sin(𝜃𝜃) cos(𝜃𝜃) � 

Transformation with 
matrix 𝑨𝑨 followed by 
transformation with 

matrix B 

𝑨𝑨𝑨𝑨  
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3D Rotations 

The direction of positive rotation is taken to be anticlockwise when looking towards the 
origin from the positive side of the axis of rotation. 

 

Invariance Under Transformations 

 

 

 

Invariant point �𝑥𝑥𝑦𝑦� under 
a transformation 𝑴𝑴  

𝑴𝑴�
𝑥𝑥
𝑦𝑦� =  �

𝑥𝑥
𝑦𝑦� 

Invariant line 𝑙𝑙  The image of any point on 𝑙𝑙 is also on 𝑙𝑙  

Rotation around 𝑥𝑥 axis 
by an angle 𝜃𝜃 

�
1 0 0
0 cos(𝜃𝜃) − sin(𝜃𝜃)
0 sin(𝜃𝜃) cos(𝜃𝜃)

� 

 

Rotation around 𝑦𝑦 axis 
by an angle 𝜃𝜃 

�
cos(𝜃𝜃) 0 sin(𝜃𝜃)

0 1 0
−sin(𝜃𝜃) 0 cos(𝜃𝜃)

� 

Rotation around 𝑧𝑧 axis by 
an angle 𝜃𝜃 

�
cos(𝜃𝜃) − sin(𝜃𝜃) 0
sin(𝜃𝜃) cos(𝜃𝜃) 0

0 0 1
� 
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Determinants 

 

 

Solutions of Simultaneous Equations  

Condition for a system 
of equations 𝑴𝑴𝑴𝑴 = 𝒂𝒂 

to have a unique 
solution 

det(𝑴𝑴) ≠ 0  

 

 

 

 

 

Determinant of a 2 ×
2 matrix 

det �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = 𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 

 

Determinant of a 
matrix product 

 
det𝑨𝑨𝑨𝑨 = det𝑨𝑨 × det𝑨𝑨 

Determinant of a 
multiple of a matrix   det(𝑘𝑘𝑨𝑨) = 𝑘𝑘2det (𝑨𝑨) 

det�
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = 𝑎𝑎 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑅𝑅 𝑓𝑓
ℎ 𝑖𝑖 �

− 𝑏𝑏 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑑𝑑 𝑓𝑓
𝑔𝑔 𝑖𝑖 � + 𝑐𝑐 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑑𝑑 𝑅𝑅

𝑔𝑔 ℎ� 
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Inverses of Matrices 

Inverse matrix  
𝑨𝑨−𝟏𝟏 is the inverse matrix of 𝑨𝑨, such that  

𝑨𝑨𝑨𝑨−𝟏𝟏 = 𝑨𝑨−𝟏𝟏𝑨𝑨 = 𝑰𝑰 

Singular matrix  det(𝑨𝑨) = 0 ⇒ 𝑨𝑨−𝟏𝟏  does not exist. 𝑨𝑨 is singular  

Inverse of a 2 × 2 
matrix 

1
𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 �

𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎 � , 𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 ≠ 0 

Cofactor of an 
element – 

determinant of the 
matrix without the 
element’s row and 

column  

Cofactor of element 𝑎𝑎 in �
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� is  

det �𝑅𝑅 𝑓𝑓
ℎ 𝑖𝑖 �

 

Cofactor matrix of 𝑨𝑨 – 
made of the cofactors 

of all elements of 𝑨𝑨 
Denoted by 𝑪𝑪  

Inverse of a 3 × 3 
matrix   

𝑨𝑨−𝟏𝟏 =
1

det(𝑨𝑨)𝑪𝑪
𝑇𝑇  

Inverse of a matrix 
product 

(𝑨𝑨𝑨𝑨)−1 = 𝑨𝑨−1𝑨𝑨−1 

Inverse of a 
transformation 

For a transformation given by matrix 𝑴𝑴, its inverse is 

given by 𝑴𝑴−𝟏𝟏 
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Further Vectors 

Vector and Cartesian Forms of an Equation of a Straight Line 

Vector equation of a line 
through the point 𝒂𝒂 

parallel to the vector 𝒃𝒃 

𝑴𝑴 = 𝒂𝒂 + 𝜆𝜆𝒃𝒃 
 

Cartesian equation of a 
line in 3D 

For 𝑴𝑴 =  �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� + 𝜆𝜆 �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
�, writing 𝜆𝜆 in terms of 𝑥𝑥,𝑦𝑦 and  𝑧𝑧:  

𝑥𝑥 − 𝑎𝑎1
𝑏𝑏1

=
𝑦𝑦 − 𝑎𝑎2
𝑏𝑏2

=
𝑧𝑧 − 𝑎𝑎3
𝑏𝑏3

 

 
Scalar Product 

 

 
Intersections of Lines  

Scalar product of two 
vectors 𝒂𝒂 and 𝒃𝒃 𝒂𝒂 ∙ 𝒃𝒃 = �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� ∙ �

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� = 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + 𝑎𝑎3𝑏𝑏3 = |𝒂𝒂||𝒃𝒃| cos(𝜃𝜃) 

Angle 𝜃𝜃 between two 
vectors 𝒂𝒂,𝒃𝒃, or between 

two lines with these 
direction vectors  

𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑠𝑠−1 �
𝒂𝒂 ∙ 𝒃𝒃

|𝒂𝒂||𝒃𝒃|� 

Condition for 𝒂𝒂 and 𝒃𝒃 to 
be perpendicular vectors  𝒂𝒂 ∙ 𝒃𝒃 = 0  

Intersection type 𝑴𝑴𝟏𝟏 = 𝒂𝒂𝟏𝟏 + 𝝀𝝀𝟏𝟏𝒃𝒃𝟏𝟏,          𝑴𝑴𝟐𝟐 = 𝒂𝒂𝟐𝟐 + 𝝀𝝀𝟐𝟐𝒃𝒃𝟐𝟐  

Parallel lines  𝒃𝒃𝟏𝟏 = 𝝁𝝁𝒃𝒃𝟐𝟐 

Intersecting lines  There exist values of 𝜆𝜆1and 𝜆𝜆2 such that  
𝑴𝑴𝟏𝟏 = 𝑴𝑴𝟐𝟐 

Skew  No such 𝜆𝜆1 and 𝜆𝜆2 as above exist 
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Vector Product 
 
 
 
 

 
Further Algebra 

 
Roots of Equations 

 
 

Transformations of Equations  

Vector Product – gives a vector 
perpendicular to both 𝒂𝒂 and 𝒃𝒃 𝒂𝒂 × 𝒃𝒃 = �

𝑎𝑎2𝑏𝑏3 − 𝑏𝑏2𝑎𝑎3
𝑎𝑎3𝑏𝑏1 − 𝑏𝑏3𝑎𝑎1
𝑎𝑎1𝑏𝑏2 − 𝑏𝑏1𝑎𝑎2

� 

Relationship between the 
roots and coefficients of a 

quadratic polynomial 

Let 𝑝𝑝 and 𝑞𝑞 be roots of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0. Then,  
𝑝𝑝 + 𝑞𝑞 =  −𝑏𝑏

𝑎𝑎
, 𝑝𝑝𝑞𝑞 = 𝑐𝑐

𝑎𝑎
. 

Relationship between the 
roots and coefficients of a 

cubic polynomial 

Let 𝑝𝑝, 𝑞𝑞, and 𝑟𝑟 be the roots of 𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑 =
0. Then, 

𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 =  −
𝑏𝑏
𝑎𝑎,   

𝑝𝑝𝑞𝑞 + 𝑞𝑞𝑟𝑟 + 𝑟𝑟𝑝𝑝 =
𝑐𝑐
𝑎𝑎, 

  𝑝𝑝𝑞𝑞𝑟𝑟 =  −𝑑𝑑
𝑎𝑎

. 
 

Relationship between the 
roots and coefficients of a 

quartic polynomial 

Let 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 and 𝑠𝑠 be the roots of 𝑎𝑎𝑥𝑥4 + 𝑏𝑏𝑥𝑥3 + 𝑐𝑐𝑥𝑥2 +
𝑑𝑑𝑥𝑥 + 𝑅𝑅 = 0.   

Then,  
 

𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 + 𝑠𝑠 =  −
𝑏𝑏
𝑎𝑎,   

𝑝𝑝𝑞𝑞 + 𝑝𝑝𝑟𝑟 + 𝑝𝑝𝑠𝑠 + 𝑞𝑞𝑟𝑟 + 𝑞𝑞𝑠𝑠 + 𝑟𝑟𝑠𝑠 =
𝑐𝑐
𝑎𝑎,  

𝑝𝑝𝑞𝑞𝑟𝑟 + 𝑝𝑝𝑞𝑞𝑠𝑠 + 𝑝𝑝𝑟𝑟𝑠𝑠 + 𝑞𝑞𝑟𝑟𝑠𝑠 =  −
𝑑𝑑
𝑎𝑎, 

  𝑝𝑝𝑞𝑞𝑟𝑟𝑠𝑠 = 𝑒𝑒
𝑎𝑎

. 
 

Transformation 
of the roots of an 
equation, given a 
transformation 
of the equation  

Let an equation in 𝑥𝑥 have root 𝑥𝑥 = 𝑝𝑝.  
Given a substitution 𝑢𝑢 = 𝑓𝑓(𝑥𝑥), the transformed 

equation has a root 𝑢𝑢 = 𝑓𝑓(𝑝𝑝)  
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